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8. EUCLIDEAN GEOMETRY 
  

§8.1. Euclid’s Academy 
 Mathematics can’t claim to be the world’s oldest 

profession. But as an intellectual activity it is certainly 

one of the oldest. Of course mathematics only became a 

profession around the time of the Renaissance. But 

historians believe that mathematics has been practised for 

many thousands of years. 

  The motivation was practical. It was to serve the 

needs of commerce. There were only two branches of 

mathematical knowledge back then: arithmetic and 

geometry. 

 Arithmetic was developed in order to support 

book-keeping (though records of financial transactions 

were written on stone, or papyrus sheets, not in books). 

Geometry was developed as an aid to surveying. The 

word ‘geometry’ comes from the Greek, meaning 

‘measuring the earth’. 

 Euclid, in the 4th century BC, was a Greek who is 

credited with making a systematic intellectual discipline 

out of the many rules of thumb that were previously in 

use. This was at a time long before universities and it is 

believed by historians that Euclid surrounded himself by 

disciples, probably much younger than himself. He ran 

something between an academy and a research school. 
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 One imagines them sitting around a sandy square 

in Athens, drawing diagrams in the sand and debating 

geometric ideas. They may have used the Socratic method 

where dialogue and discussion was used to locate truths. 

 It has been said that, before Euclid, geometry 

employed the scientific method. It was suggested that 

Pythagoras formulated his famous theorem by examining 

a large number of right-angled triangles. That’s how we 

might do it today, but papyrus was scarce back then. It 

was long known that the 3-4-5 triangle was right-angled 

and somebody might have stumbled on the 5-12-13 

example. Then perhaps somebody else noted the 

arithmetic pattern in these numbers, but a proof was still 

to come. 
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 No doubt the discussion that took place between 

the Euclideans involved a lot of argument along the lines 

of ‘surely …’ or ‘it would seem reasonable that …’. But 

I imagine that short arguments would have been put 

forward that provided logical bridges between some of 

these geometrical statements. “Well we all know that … 

and so it follows that … (perhaps with a few extra 

construction lines) …”. 

 We have no way of knowing what went on in these 

discussions, but I can imagine Euclid himself coming up 

with the idea of systematising all these bridges and 

creating a unified structure that built geometry from a 

small number of postulates, or axioms. These were very 

basic statements which could be accepted intuitively. For 

example, “given any two distinct points there exists 

exactly one straight line passing through them”. Perhaps 

this would have been backed up by a small amount of 

experimentation, but I’m sure you’ve seen enough 

examples to know in your heart that it’s true. Of course 

you probably never considered the possibility that there 

might be many straight lines joining them that were so 

close to each other that your eye couldn’t tell the 

difference. 

 

 Euclid’s magnum opus is his Elements. This has 

been a standard text-book in universities and schools 

throughout many centuries. It was used, both in the 
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original Greek, and later in translation, up until the end of 

the 19th century. It is said that it is second only to the Bible 

in the number of editions (over a thousand) printed since 

the first printed edition in 1482. 

 

§8.2. Euclid’s Formulation of Geometry 
 Euclid had the vision of formulating geometry in 

such a way that the truth of the theorems didn’t rest on the 

intuition of the individual. By setting down axioms, and 

building everything logically from these axioms, 

everyone who accepted the axioms would have to accept 

all the theorems. And these axioms were considered to be 

self-evident. 

 

 Euclid’s formulation consists of five sections. 

(1) 23 Definitions 

 By rights, some of these should be undefined 

entities, but Euclid feels the need to define even these. So 

he defines a point as that of which there is no part and a 

line as a length without breadth. The first is very vague 

and the second is meaningless without first having 

defined length and breadth. But it does reveal the fact that, 

for Euclid, lines are finite. We would call them line 

segments. However he includes a postulate (axiom) to the 

effect that any line can be extended where necessary. 

 He defines a circle as a ‘plane figure contained by 

a single line (called a circumference), such that all of the 
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straight lines radiating towards the circumference from 

one point amongst those lying inside the circle are equal 

to one another’. But he doesn’t actually define radius, or 

even length. The underlying number system is unstated. 

 Angles are defined as ‘the inclination of lines to 

one another’. This is a case of defining one thing in terms 

of a synonym. Not very useful. 

 

(2) 5 Postulates 

 These are what we would call his axioms. The first 

three are actually constructions. He doesn’t exactly say 

that what is constructed is unique, but this is implied. 

(E1) Through any pair of points there a (unique) line. 

 

(E2) Any (finite) line can be produced. 

By considering lines as infinite we can avoid the need for 

this postulate. 

 

(E3) There exists a (unique) circle with any point as 

centre and with any radius. 

 A better version would be to say that, given any two 

distinct points there is exactly one circle whose centre is 

the first point and which passes through the second. This 

avoids the need for defining radius. 

 In his definition Euclid seems to be considering the 

circle to include the interior, but when he starts 
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intersecting a circle with a line it’s clear that he means the 

circumference. 

 

(E4) All right-angles are equal. 

 Euclid defines a right-angle by saying that when a 

line meets another and the adjacent angles are equal then 

they are right angles. This postulate doesn’t seem to add 

anything. 

 

(E5) If a line cuts two other lines and the internal 

angles total less than two right angles, then the lines 

are not parallel. 

 

 Postulate (E5) was reformulated by Playfair (1748-

1819) as follows: 

(P5) Given a line h, and a point P that does not lie on 

h, there is a unique line k such that P lies on k and no 

point lies on both h and k. 

  

 

(3) 5 Common Notions 

 These have more to do with the underlying number 

system than to geometry such as ‘things that are equal to 

the same thing are equal to one another’. 

 When I began this chapter, I thought that I could 

incorporate Euclidean Geometry by simply defining the 

h 

k 
P 
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Euclidean Plane to be ℝ2. Points are just vectors in ℝ2. 

Lines, triangles and circles are just certain sets of points 

in ℝ2. So, all I’d have to do would be to prove the 

Euclidean axioms and then everything would follow as in 

Euclid’s Elements. Euclidean Geometry would, as 

everything else, sit firmly on the foundation of the ZF 

axioms for set theory. 

 But I began to realise that, as good a job as Euclid 

did (he was far ahead of his time), he didn’t quite achieve 

his goal of making plane geometry stand alone on his 

axioms, without the need for geometrical intuition. 

 Essentially he had the axioms for an affine plane, a 

geometry without measurement. By just taking Axioms 

(E1) and (P5) we have: 

 

(A1) Every pair of distinct points lies on exactly one 

line. 

(A2) Given a line, h, and a point P that doesn’t lie on 

h, there is exactly one line, k, such that P lies on k and 

no point lies on both h and k.  

  

 Euclid includes notions of length and angle, but is 

vague as to what they are. He has the notion of equal line 

segments, which appears to have an underlying concept 

of similarity. Although he doesn’t say so explicitly he 

seems to consider two intervals to be equal if one can be 

obtained from the other by a rotation followed by a 
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translation. This is clearly his intention with his definition 

of a circle with equal radii. But in a few places he needs 

to add two intervals if we have three collinear points. 

 We could tell our disembodied angel that ‘same 

length’ is an equivalence relation and include an axiom 

that if B lies between A and C on a line then AB + BC = 

AC. 

 Angles are even more of a problem. We don’t just 

want to have equal angles, but we frequently need to add 

angles. 

 

§8.3. The Euclidean Plane 
 So I had to abandon any idea of teaching my 

disembodied angel Euclidean Geometry by following 

Euclid’s Elements. In any case I don’t want her to have to 

accept any more axioms than those of set theory. So I 

would proceed a follows. 

 Having developed ℝ, I introduce ℝn and so define 

points and lines. The line joining u and v would be the set 

{(1 − )u + v|   ℝ}. This automatically gives a 

direction to the line, should we need it and enables us to 

define w = (1 − )u + v to lie between u and v if 

0 <  < 1. 

 I would then define the dot product in the usual way 

and so define distance and lengths. Angles can be 

defined by: 
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ABC = cos−1
(A − B).(C − B)

|A − B|.|C − B|
 . 

 

 After playing with n-dimensional Euclidean 

Geometry I would focus on the Euclidean Plane ℝ2. I 

would identify it with the field of complex numbers, and 

show that every non-zero point (complex number) can be 

expressed as r(cos + i sin) for r > 0. 

 I would define angles afresh by: 

ABC = arg(C − B) − arg(A − B). 

Angles would be considered as real numbers modulo 2. 

 And, if the angel insisted, I would attempt to 

reconcile this with the previous definition. (I leave this as 

an exercise, which means I haven’t bothered to do it 

myself.) Clearly addition of angles works properly in that 

AOB + BOC = AOC. 

 

 Things become somewhat difficult when it comes 

to areas. 

 

§8.4. Defining Areas 
 How do we define area? We first learnt that the area 

of a rectangle is ‘length times breadth’. No difficulty in 

that. And which side of the rectangle is the length? 

Clearly it doesn’t matter because lengths are real numbers 

and real numbers commute under multiplication. 
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 We probably next saw a rectangle cut in two by a 

diagonal and, seeing that the resulting right-angled 

triangles are congruent we decided that it was obvious 

that the area of a right-angled triangle is half the base 

times the perpendicular height. 

 Now a triangle has three possible bases, each a 

corresponding perpendicular height. I don’t know 

whether it ever occurred to you that you might get three 

different areas, depending which you took as the base. I 

thought not. It’s intuitively obvious that it makes no 

difference. 

 Is the area of a triangle ‘well-defined’? We 

somehow have the concept of area hard-wired into our 

brains. Perhaps we think of area being related to the 

amount of paint we’d need to paint it. It’s obvious that it 

doesn’t matter which way up we stand it. 

 But if we are to do things properly, and certainly if 

we want the disembodied angel to be convinced, we have 

to prove well-definedness. 

 

Theorem 1: The area of a triangle as ‘half the base 

times the perpendicular height’ is independent of which 

side is taken as the base. 

Proof: Let ABC be a triangle, with |BC| = a, |CA| = b and 

|AB| = c. Let u, v, w be the perpendicular distances of A, 

B, C from the opposite sides be u, v and w respectively. 
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For convenience, locate B at the origin, C at (a, 0) and A 

at (h, k). 

 

 

 

 

 

 

 

 

 

The perpendicular distance of the point (x1, y1) from the 

line px + qy + r is 






px1 + qy1 + r

p2 + q2  . 

The equation of AB is y = 
k

h
 x, that is kx − hy = 0. 

Hence u = 
ka

k2 + h2  . Now c = k2 + h2  so cu = ka.  

The equation of AC is 
y

x − a
  = 

k

h − a
 , that is 

kx + (a − h)y − ka = 0. 

Hence v = 
ka

k2 + (a − h)2
 . Now b = k2 + (a − h)2 , so 

bv = ka. And u = k, so au = ka. 

So the area of the triangle is ½ka no matter which side is 

taken as the base. 

A(h, k) 

B(0, 0) C(a,0) 

F 

a 

b 

c 

u 

v 
w 
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 In primary school we learnt that the area of a 

polygon can be found by triangulating it – divide it up into 

triangles. We could take this as the definition of the area 

of a polygon. The trouble is the question of well-

definedness. 

 You and I might divide a polygon into triangles in 

two completely different ways. How do we know that we 

always get the same answer. It’s seems obvious that we 

do get the same answer but I’d rather not have to include 

this among our axioms. 

 

 Suppose we triangulate a triangle. Why would you 

want to do that? Never mind. If area is additive then 

cutting a triangle into smaller triangles shouldn’t affect 

the total area. Let’s just consider a triangulation into two 

triangles. 

 

Theorem 2: Let ABC be a triangle and D lie on BC 

between B and C. Then |ABC| = |ABD| + |ADC|. 

 

 

 

 

 

 

A 

B C 

D 
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Proof: By Theorem 1 we are free to choose BC, BD and 

DC, respectively, as the bases. Clearly all three triangles 

have the same perpendicular height. Let it be h. 

Then |ABC| = ½h|BC| = ½h(|BD| + |BC|) 

                                       = ½h|BD| + ½h|BC| 

                                       = |ABD| + |ADC|. 

 

 Let’s take a quadrilateral. There are infinitely ways 

of triangulating a quadrilateral, but if we want to minimise 

the number of triangles there are just two possibilities. We 

divide the quadrilateral into two triangles, using one of 

the two diagonals. Yes, we can prove that we get the same 

area either way.  

 

Theorem 2: Let P(ABCD) be a quadrilateral. Then 

|ACD| + |ABC| = |ABD| + |BCD|. 

Proof: Let E = AC  BD. 

 

 

 

 

 

 

 

Then |ACD| = |AED| + |DEC| by Theorem 2. 

|ABC| = |ABE| + |BCE|, again by Theorem 2. 

  

A 

B 

D 
E 

C 
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Hence |ACD| + |ABC| = (|AED| + |DEC|) 

                                          + (|ABE| + |BCE|) 

       = (|AED| + |ABE|) + (|ECD| + |BCE|) 

       = |ABD| + |BCD|. 

 

 As this example suggests, given two triangulations 

we can refine each of them to a common triangulation. 

Here’s a clue as to how we can prove that the area of a 

polygon is independent of the triangulation. All we need 

is a proof that if a triangle is triangulated, its area is the 

sum of the areas in the triangulation. Possibly this could 

be done by induction in some way. 

 But here’s where I grind to a halt. I haven’t been 

able to prove this. Nor have I been able to find a proof in 

the literature. In fact I cannot find any reference to the 

additivity of area being an issue. 

 

 If you think I’m making a mountain out of a 

molehill, you’d be right. Of course area is additive. But if 

you want to really understand something you can’t just 

say, “of course”. 

 

 Euclid was very careful in building up geometry in 

a rigorous and systematic way, but he fell down when it 

comes to area. In fact he never defines area and nor does 

he take it as an undefined concept subject to his axioms. 
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 The additivity of area seems to be hard-wired into 

our brains, like the additivity of volume. Hard-wired it 

might be, but we don’t seem to 

be born with it. The psychologist 

Jean Piaget (1896-1980) carried 

out a famous experiment, 

repeated by countless other 

psychologists since, where 

children are shown two identical 

glasses of water. When they see one glass poured into a 

taller but narrower glass they are convinced, up to the age 

of about 8 or 9, that the taller glass now contains more 

water than the other one. A similar experiment has been 

carried out with areas and the results were much the same.  

 

 Of course there’s more to area than just areas of 

polygons. For regions involving curved boundaries we 

need calculus. For more general regions we need a branch 

of mathematics called Measure Theory. 

 

 Anyway, this is as far as I’m going to take 

Euclidean Geometry in these notes. If you want a 

development of the subject beyond this introductory 

stage, please consult my notes in Geometry vol 1. We will 

now further develop Set Theory itself. 
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 I will develop the theory of infinite numbers. For a 

start there are two types of number – cardinal numbers 

and ordinal numbers. 

 You may have met the distinction between cardinal 

and ordinal finite numbers. The distinction there is purely 

linguistic. Cardinal numbers count the number of 

elements in a set. Ordinal numbers describe the position 

of an element when a set is ordered. So ‘five’ is a cardinal 

number, while ‘fifth’ is the corresponding ordinal 

number. With infinite numbers the distinction is far from 

just linguistic. A single infinite cardinal number 

corresponds to infinitely many different infinite ordinal 

numbers. 

 Yes, I’m using the plural when it comes to talking 

about infinite numbers. We’ll use the notation #S to 

denote the size of the set S. Forget the symbol  for 

infinity. There are, in fact, infinitely many infinite 

numbers (both cardinal and ordinal). 

 The smallest infinite cardinal number is #ℕ, the 

size of the set {0, 1, 2, 3, …}. When Georg Cantor 

developed the theory of infinite cardinal numbers in the 

19th century, he used the symbol 0 to denote # ℕ. 

 There are sets that appear to be much bigger than 

ℕ, such as ℤ (integers) and ℚ (rational numbers), but 

#ℤ = #ℚ = 0. 

The jump comes when we pass from the rational numbers 

to the real numbers. I shall denote #ℝ by 1. 
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In fact #ℝ = # ℂ = 1. 

 

 Now many books use the symbol 1 for ‘the next 

cardinal number after 0’. What’s the difference? 

 Most books define 1 to be the next cardinal 

number after 0. The problem is that we don’t know what 

that number is. 

 Using my notation we can ask the question, “is 

there an infinite cardinal number between 0 and 1?” 

The interesting fact is that we cannot answer that 

question. It’s not that no mathematician has ever been 

clever enough to come up with an answer. No 

mathematician ever will! 

 The reason we can be so certain is that there’s a 

proof that no proof can possibly exist for the statement, 

“there is no cardinal number between 0 and 1”. 

There’s another proof that no proof can possibly exist for 

the statement, “there exists a cardinal number between 0 

and 1”. In other words the answer to the question is 

unknowable. 

 The statement that there is no infinite number 

between 0 and 1 is called the Continuum Hypothesis. 

So the Continuum Hypothesis can never be proved true 

and it can never be proved false. If you choose to believe 

it, fine. Nobody can ever prove that you’re wrong. If you 

choose to prove it false, fine. Nobody can ever prove that 

you’re wrong. 
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 I take the pragmatic view that if we could ever 

exhibit a specific infinite number between 0 and 1, we 

would have contradicted the second statement above. 

That’s not to say I can prove that there are none – just that 

if these exist we can never get our hands on them. 

 Personally I choose to believe in the Continuum 

Hypothesis on the grounds that there’s no point in 

believing the existence of phantom numbers that one can 

never do anything with. Assuming the Continuum 

Hypothesis the next number after 0 is the cardinal 

number ℝ, which I call 1. 

 

 So hang onto your hats. You’re in for a wild ride! 

You’ll be learning about some mathematics which is, on 

the one hand, perfectly sound, but on the other it is 

perfectly weird. I call it Mathematics at the Edge of the 

Rational Universe. In fact I have some notes that go by 

that very name. These are written for the mathematical 

layman. These present notes are written at a more 

sophisticated level, as is appropriate for a mathematics 

student in his or her third year. 

 


