8. EUCLIDEAN GEOMETRY
§8.1. Euclid’s Academy

Mathematics can’t claim to be the world’s oldest
profession. But as an intellectual activity it is certainly
one of the oldest. Of course mathematics only became a
profession around the time of the Renaissance. But
historians believe that mathematics has been practised for
many thousands of years.

The motivation was practical. It was to serve the
needs of commerce. There were only two branches of
mathematical knowledge back then: arithmetic and
geometry.

Arithmetic was developed in order to support
book-keeping (though records of financial transactions
were written on stone, or papyrus sheets, not in books).
Geometry was developed as an aid to surveying. The
word ‘geometry’ comes from the Greek, meaning
‘measuring the earth’.

Euclid, in the 4™ century BC, was a Greek who is
credited with making a systematic intellectual discipline
out of the many rules of thumb that were previously in
use. This was at a time long before universities and it is
believed by historians that Euclid surrounded himself by
disciples, probably much younger than himself. He ran
something between an academy and a research school.
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One imagines them sitting around a sandy square
in Athens, drawing diagrams in the sand and debating
geometric ideas. They may have used the Socratic method
where dralogue and drscussron was used to Iocate truths.
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It has been “said that before Euclrd geometry
employed the scientific method. It was suggested that
Pythagoras formulated his famous theorem by examining
a large number of right-angled triangles. That’s how we
might do it today, but papyrus was scarce back then. It
was long known that the 3-4-5 triangle was right-angled
and somebody might have stumbled on the 5-12-13
example. Then perhaps somebody else noted the
arithmetic pattern in these numbers, but a proof was still
to come.
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No doubt the discussion that took place between
the Euclideans involved a lot of argument along the lines
of ‘surely ...” or ‘it would seem reasonable that ...’. But
| imagine that short arguments would have been put
forward that provided logical bridges between some of
these geometrical statements. “Well we all know that ...
and so it follows that ... (perhaps with a few extra
construction lines) ...”.

We have no way of knowing what went on in these
discussions, but | can imagine Euclid himself coming up
with the idea of systematising all these bridges and
creating a unified structure that built geometry from a
small number of postulates, or axioms. These were very
basic statements which could be accepted intuitively. For
example, “given any two distinct points there exists
exactly one straight line passing through them”. Perhaps
this would have been backed up by a small amount of
experimentation, but I’'m sure you’ve seen enough
examples to know in your heart that it’s true. Of course
you probably never considered the possibility that there
might be many straight lines joining them that were so
close to each other that your eye couldn’t tell the
difference.

Euclid’s magnum opus is his Elements. This has
been a standard text-book in universities and schools
throughout many centuries. It was used, both in the
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original Greek, and later in translation, up until the end of
the 19" century. It is said that it is second only to the Bible
in the number of editions (over a thousand) printed since
the first printed edition in 1482.

§8.2. Euclid’s Formulation of Geometry

Euclid had the vision of formulating geometry in
such a way that the truth of the theorems didn’t rest on the
intuition of the individual. By setting down axioms, and
building everything logically from these axioms,
everyone who accepted the axioms would have to accept
all the theorems. And these axioms were considered to be
self-evident.

Euclid’s formulation consists of five sections.
(1) 23 Definitions

By rights, some of these should be undefined
entities, but Euclid feels the need to define even these. So
he defines a point as that of which there is no part and a
line as a length without breadth. The first is very vague
and the second is meaningless without first having
defined length and breadth. But it does reveal the fact that,
for Euclid, lines are finite. We would call them line
segments. However he includes a postulate (axiom) to the
effect that any line can be extended where necessary.

He defines a circle as a ‘plane figure contained by
a single line (called a circumference), such that all of the
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straight lines radiating towards the circumference from
one point amongst those lying inside the circle are equal
to one another’. But he doesn’t actually define radius, or
even length. The underlying number system is unstated.

Angles are defined as ‘the inclination of lines to
one another’. This is a case of defining one thing in terms
of a synonym. Not very useful.

(2) 5 Postulates

These are what we would call his axioms. The first
three are actually constructions. He doesn’t exactly say
that what is constructed is unique, but this is implied.
(E1) Through any pair of points there a (unique) line.

(E2) Any (finite) line can be produced.
By considering lines as infinite we can avoid the need for
this postulate.

(E3) There exists a (unique) circle with any point as
centre and with any radius.

A better version would be to say that, given any two
distinct points there is exactly one circle whose centre is
the first point and which passes through the second. This
avoids the need for defining radius.

In his definition Euclid seems to be considering the
circle to include the interior, but when he starts
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intersecting a circle with a line it’s clear that he means the
circumference.

(E4) All right-angles are equal.

Euclid defines a right-angle by saying that when a
line meets another and the adjacent angles are equal then
they are right angles. This postulate doesn’t seem to add

anything.

(E5) If a line cuts two other lines and the internal
angles total less than two right angles, then the lines
are not parallel.

Postulate (E5) was reformulated by Playfair (1748-
1819) as follows:
(P5) Given a line h, and a point P that does not lie on
h, there is a unique line k such that P lies on k and no
point lies on both h and k.

® k
h

(3) 5 Common Notions
These have more to do with the underlying number
system than to geometry such as ‘things that are equal to
the same thing are equal to one another’.
When | began this chapter, | thought that | could
incorporate Euclidean Geometry by simply defining the
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Euclidean Plane to be R2. Points are just vectors in R2,
Lines, triangles and circles are just certain sets of points
in R% So, all I"d have to do would be to prove the
Euclidean axioms and then everything would follow as in
Euclid’s Elements. Euclidean Geometry would, as
everything else, sit firmly on the foundation of the ZF
axioms for set theory.

But | began to realise that, as good a job as Euclid
did (he was far ahead of his time), he didn’t quite achieve
his goal of making plane geometry stand alone on his
axioms, without the need for geometrical intuition.

Essentially he had the axioms for an affine plane, a
geometry without measurement. By just taking Axioms
(E1) and (P5) we have:

(Al) Every pair of distinct points lies on exactly one
line.

(A2) Given a line, h, and a point P that doesn’t lie on
h, there is exactly one line, k, such that P lies on k and
no point lies on both h and k.

Euclid includes notions of length and angle, but is
vague as to what they are. He has the notion of equal line
segments, which appears to have an underlying concept
of similarity. Although he doesn’t say so explicitly he
seems to consider two intervals to be equal if one can be
obtained from the other by a rotation followed by a
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translation. This is clearly his intention with his definition
of a circle with equal radii. But in a few places he needs
to add two intervals if we have three collinear points.

We could tell our disembodied angel that ‘same
length’ is an equivalence relation and include an axiom
that if B lies between A and C on a line then AB + BC =
AC.

Angles are even more of a problem. We don’t just
want to have equal angles, but we frequently need to add
angles.

§88.3. The Euclidean Plane

So | had to abandon any idea of teaching my
disembodied angel Euclidean Geometry by following
Euclid’s Elements. In any case I don’t want her to have to
accept any more axioms than those of set theory. So |
would proceed a follows.

Having developed R, | introduce R" and so define
points and lines. The line joining u and v would be the set
{(1 — Mu + Av| A € R}. This automatically gives a
direction to the line, should we need it and enables us to
define w = (1 — A)u + Av to lie between u and v if

O<Ac<l

| would then define the dot product in the usual way
and so define distance and lengths. Angles can be
defined by:
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(A-B).(C-B)
|/A-B[IC-B| -

/ABC = cos

After playing with n-dimensional Euclidean
Geometry | would focus on the Euclidean Plane R?. |
would identify it with the field of complex numbers, and
show that every non-zero point (complex number) can be
expressed as r(cos6 + i sin6) for r > 0.

| would define angles afresh by:

ZABC = arg(C — B) — arg(A — B).
Angles would be considered as real numbers modulo 2.

And, if the angel insisted, | would attempt to
reconcile this with the previous definition. (I leave this as
an exercise, which means I haven’t bothered to do it
myself.) Clearly addition of angles works properly in that
ZAOB + #BOC = ZAQC.

Things become somewhat difficult when it comes
to areas.

88.4. Defining Areas

How do we define area? We first learnt that the area
of a rectangle is ‘length times breadth’. No difficulty in
that. And which side of the rectangle is the length?
Clearly it doesn’t matter because lengths are real numbers
and real numbers commute under multiplication.
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We probably next saw a rectangle cut in two by a
diagonal and, seeing that the resulting right-angled
triangles are congruent we decided that it was obvious
that the area of a right-angled triangle is half the base
times the perpendicular height.

Now a triangle has three possible bases, each a
corresponding perpendicular height. 1 don’t know
whether it ever occurred to you that you might get three
different areas, depending which you took as the base. |
thought not. It’s intuitively obvious that it makes no
difference.

Is the area of a triangle ‘well-defined’? We
somehow have the concept of area hard-wired into our
brains. Perhaps we think of area being related to the
amount of paint we’d need to paint it. It’s obvious that it
doesn’t matter which way up we stand it.

But if we are to do things properly, and certainly if
we want the disembodied angel to be convinced, we have
to prove well-definedness.

Theorem 1: The area of a triangle as ‘half the base
times the perpendicular height’ is independent of which
side is taken as the base.

Proof: Let ABC be a triangle, with |IBC|=a, |CA|=band
|AB| = c. Let u, v, w be the perpendicular distances of A,
B, C from the opposite sides be u, v and w respectively.
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For convenience, locate B at the origin, C at (a, 0) and A
at (h, k).

Ah, k)

B(0, 0) C(a,0)

The perpendicular distance of the point (x;, y1) from the
PXa+Qys +r

The equation of AB isy = E X, that is kx — hy = 0.

linepx+qy+ris

_—ka —_ 2 2 —
Henceu—\/m .Nowc—\/k + h* so cu = ka.

K
The equation of AC is Y - , that is
X—a h-a

kx + (a —h)y — ka =0.

k
Hence v = k2+(:1 h)Z.Nowb=\/k2+(a—h)2,so

bv = ka. And u =k, so au = ka.
So the area of the triangle is ¥2ka no matter which side is
taken as the base.
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In primary school we learnt that the area of a
polygon can be found by triangulating it —divide it up into
triangles. We could take this as the definition of the area
of a polygon. The trouble is the question of well-
definedness.

You and I might divide a polygon into triangles in
two completely different ways. How do we know that we
always get the same answer. It’s seems obvious that we
do get the same answer but I’d rather not have to include
this among our axioms.

Suppose we triangulate a triangle. Why would you
want to do that? Never mind. If area is additive then
cutting a triangle into smaller triangles shouldn’t affect
the total area. Let’s just consider a triangulation into two
triangles.

Theorem 2: Let ABC be a triangle and D lie on BC
between B and C. Then |AABC| = |[AABD| + |AADC]|.

A
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Proof: By Theorem 1 we are free to choose BC, BD and
DC, respectively, as the bases. Clearly all three triangles
have the same perpendicular height. Let it be h.
Then |AABC| = %2h|BC| = *2h(|BD| + |BC|)

= 14h|BD| + ¥2h|BC]

=|AABD| + |[AADC|.

Let’s take a quadrilateral. There are infinitely ways
of triangulating a quadrilateral, but if we want to minimise
the number of triangles there are just two possibilities. We
divide the quadrilateral into two triangles, using one of
the two diagonals. Yes, we can prove that we get the same
area either way.

Theorem 2: Let 2(ABCD) be a quadrilateral. Then
|AACD| + |AABC| = |AABD| + |ABCD|.
Proof: Let E= AC n BD.
A

(o3

C
Then |AACD| = |AAED| + |ADEC| by Theorem 2.
|AABC| = |[AABE| + |ABCE|, again by Theorem 2.

D
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Hence |AACD| + |JAABC| = (JAAED] + |ADEC])
+ (JAABE| + |ABCE])
= (|AAED| + |AABE|) + (JAECD| + |ABCE]|)

= |AABD| + |ABCD].

As this example suggests, given two triangulations
we can refine each of them to a common triangulation.
Here’s a clue as to how we can prove that the area of a
polygon is independent of the triangulation. All we need
is a proof that if a triangle is triangulated, its area is the
sum of the areas in the triangulation. Possibly this could
be done by induction in some way.

But here’s where I grind to a halt. I haven’t been
able to prove this. Nor have | been able to find a proof in
the literature. In fact I cannot find any reference to the
additivity of area being an issue.

If you think I’m making a mountain out of a
molehill, you’d be right. Of course area is additive. But if
you want to really understand something you can’t just
say, “of course”.

Euclid was very careful in building up geometry in
a rigorous and systematic way, but he fell down when it
comes to area. In fact he never defines area and nor does
he take it as an undefined concept subject to his axioms.
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The additivity of area seems to be hard-wired into
our brains, like the additivity of volume. Hard-wired it
might be, but we don’t seem to
be born with it. The psychologist
Jean Piaget (1896-1980) carried
out a famous experiment,
repeated by countless other
psychologists  since, where
children are shown two identical
glasses of water. When they see one glass poured into a
taller but narrower glass they are convinced, up to the age
of about 8 or 9, that the taller glass now contains more
water than the other one. A similar experiment has been
carried out with areas and the results were much the same.

Of course there’s more to area than just areas of
polygons. For regions involving curved boundaries we
need calculus. For more general regions we need a branch
of mathematics called Measure Theory.

Anyway, this is as far as I'm going to take
Euclidean Geometry in these notes. If you want a
development of the subject beyond this introductory
stage, please consult my notes in Geometry vol 1. We will
now further develop Set Theory itself.
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| will develop the theory of infinite numbers. For a
start there are two types of number — cardinal numbers
and ordinal numbers.

You may have met the distinction between cardinal
and ordinal finite numbers. The distinction there is purely
linguistic. Cardinal numbers count the number of
elements in a set. Ordinal numbers describe the position
of an element when a set is ordered. So ‘five’ is a cardinal
number, while ‘fifth® is the corresponding ordinal
number. With infinite numbers the distinction is far from
just linguistic. A single infinite cardinal number
corresponds to infinitely many different infinite ordinal
numbers.

Yes, I’'m using the plural when it comes to talking
about infinite numbers. We’ll use the notation #S to
denote the size of the set S. Forget the symbol « for
infinity. There are, in fact, infinitely many infinite
numbers (both cardinal and ordinal).

The smallest infinite cardinal number is #N, the
size of the set {0, 1, 2, 3, ...}. When Georg Cantor
developed the theory of infinite cardinal numbers in the
19" century, he used the symbol N to denote # N.

There are sets that appear to be much bigger than
N, such as Z (integers) and Q (rational numbers), but

#Z = #Q = No.
The jump comes when we pass from the rational numbers
to the real numbers. | shall denote #R by ;.

134



Infact #R =# C = 1.

Now many books use the symbol & for ‘the next
cardinal number after NXo’. What’s the difference?

Most books define N; to be the next cardinal
number after Xo. The problem is that we don’t know what
that number is.

Using my notation we can ask the question, “is
there an infinite cardinal number between X, and N;?”
The interesting fact is that we cannot answer that
guestion. It’s not that no mathematician has ever been
clever enough to come up with an answer. No
mathematician ever will!

The reason we can be so certain is that there’s a
proof that no proof can possibly exist for the statement,
“there is no cardinal number between N, and N;”.
There’s another proof that no proof can possibly exist for
the statement, “there exists a cardinal number between Xy
and N;”. In other words the answer to the question is
unknowable.

The statement that there is no infinite number
between N and X is called the Continuum Hypothesis.
So the Continuum Hypothesis can never be proved true
and it can never be proved false. If you choose to believe
it, fine. Nobody can ever prove that you’re wrong. If you
choose to prove it false, fine. Nobody can ever prove that
you’re wrong.
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| take the pragmatic view that if we could ever
exhibit a specific infinite number between X, and N1, we
would have contradicted the second statement above.
That’s not to say | can prove that there are none — just that
If these exist we can never get our hands on them.

Personally | choose to believe in the Continuum
Hypothesis on the grounds that there’s no point in
believing the existence of phantom numbers that one can
never do anything with. Assuming the Continuum
Hypothesis the next number after Ny is the cardinal
number R, which | call ;.

So hang onto your hats. You’re in for a wild ride!
You’ll be learning about some mathematics which is, on
the one hand, perfectly sound, but on the other it is
perfectly weird. | call it Mathematics at the Edge of the
Rational Universe. In fact | have some notes that go by
that very name. These are written for the mathematical
layman. These present notes are written at a more
sophisticated level, as is appropriate for a mathematics
student in his or her third year.
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